Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. Applied Soft Computing, 7(1), 136–144. https://doi.org/10.1016/j.asoc.2005.06.001.
Alghushairy, O., Alsini, R., Ma, X., & Soule, T. (2020). A Genetic-Based Incremental Local Outlier Factor Algorithm for Efficient Data Stream Processing. In ICCDA 2020. Proceedings of the 4th International Conference on Computational Data and Analytics (pp. 38–45). Association for Computing Machinery. https://doi.org/10.1145/3388142.3388160.
Barrachina, S., Bender, O., Casacuberta, F., Civera, J., Cubel, E., Khadivi, S., Lagarda, A., Ney, H., Tomás, J., Vidal, E., & Vilar, J. M. (2009). Statistical Approaches to Computer-Assisted Translation. Computational Linguistics, 35(1), 3–28. https://doi.org/10.1162/coli.2008.07-055-r2-06-29.
Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models, and classification. ACM Computing Surveys, 53(3), 1–37. https://doi.org/10.1145/3381028.
Braaksma, B., & Offermans, M. (2021). Statistics Netherlands and AI. In Proceedings of Statistics Canada Symposium: Adopting Data Science in Official Statistics to Meet Society’s Emerging Needs. https://www150.statcan.gc.ca/n1/en/pub/11-522-x/2021001/article/00011-eng.pdf?st=ncDUTkRG.
Cateni, S., Vannucci, M., Vannocci, M., & Colla, V. (2013). Variable Selection and Feature Extraction Through Artificial Intelligence Techniques. In L. Freitas, & A. P. B. Rodrigues De Freitas (Eds.), Multivariate Analysis in Management, Engineering and the Sciences (pp. 103–118). https://doi.org/10.5772/53862.
Chu, K., & Poirier, C. (2015). Machine Learning Documentation Initiative. https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.50/2015/Topic3_Canada_paper.pdf.
El Mestari, S. Z., Lenzini, G., & Demirci, H. (2024). Preserving data privacy in machine learning systems. Computers & Security, 137, 1–22. https://doi.org/10.1016/j.cose.2023.103605.
Hu, Y., Li, W., Wright, D., Orhun, A., Wilson, D., Maher, O., & Raad, M. (2019). Artificial Intelligence Approaches. In J. P. Wilson (Ed.), The Geographic Information Science and Technology Body of Knowledge (pp. 1–12). University Consortium for Geographic Information Science. https://doi.org/10.22224/gistbok/2019.3.4.
Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500.
Julien, C., Choi, I., Deeben, E., Yung, W., Wesley, Y., & Measure, A. (2020). HLG-MOS Machine Learning Project. https://statswiki.unece.org/display/ML/HLG-MOS+Machine+Learning+Project.
Koch, C. (2016). How the Computer Beat the Go Player. Scientific American Mind, 27(4), 20–23. https://doi.org/10.1038/scientificamericanmind0716-20.
Openshaw, S. (1992). Some Suggestions Concerning the Development of Artificial Intelligence Tools for Spatial Modelling and Analysis in GIS. The Annals of Regional Science, 26(1), 35–51. https://doi.org/10.1007/BF01581479.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144. https://doi.org/10.1126/science.aar6404.
United Nations. (2014). Resolution adopted by the General Assembly on 29 January 2014. Fundamental Principles of Official Statistics (A/RES/68/261). https://unstats.un.org/unsd/dnss/gp/fp-new-e.pdf.
United Nations Economic Commission for Europe. (2021). Machine Learning for Official Statistics. United Nations. https://unece.org/sites/default/files/2022-09/ECECESSTAT20216.pdf.
United Nations Statistics Division. (n.d.). Principles Governing International Statistical Activities. https://unstats.un.org/unsd/ccsa/principles_stat_activities/.
Wickramasuriya, S. L., Athanasopoulos, G., & Hyndman, R. J. (2019). Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of American Statistical Association, 114(526), 804–819. https://doi.org/10.1080/01621459.2018.1448825.
Yung, W., Karkimaa, J., Scannapieco, M., Barcarolli, G., Zardetto, D., Ruiz Sanchez, J. A., Braaksma, B., Buelens, B., & Burger, J. (2018). The use of machine learning in official statistics. United Nations Economic Commission for Europe. https://unece.org/sites/default/files/2024-07/HLGMOS%20The%20use%20of%20machine%20learning%20in%20official%20statistics.pdf.